3.9.15 \(\int \frac {1}{x^5 \sqrt {a+b x^4}} \, dx\) [815]

Optimal. Leaf size=50 \[ -\frac {\sqrt {a+b x^4}}{4 a x^4}+\frac {b \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{4 a^{3/2}} \]

[Out]

1/4*b*arctanh((b*x^4+a)^(1/2)/a^(1/2))/a^(3/2)-1/4*(b*x^4+a)^(1/2)/a/x^4

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 50, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {272, 44, 65, 214} \begin {gather*} \frac {b \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{4 a^{3/2}}-\frac {\sqrt {a+b x^4}}{4 a x^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^5*Sqrt[a + b*x^4]),x]

[Out]

-1/4*Sqrt[a + b*x^4]/(a*x^4) + (b*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/(4*a^(3/2))

Rule 44

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && LtQ[n, 0]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x^5 \sqrt {a+b x^4}} \, dx &=\frac {1}{4} \text {Subst}\left (\int \frac {1}{x^2 \sqrt {a+b x}} \, dx,x,x^4\right )\\ &=-\frac {\sqrt {a+b x^4}}{4 a x^4}-\frac {b \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,x^4\right )}{8 a}\\ &=-\frac {\sqrt {a+b x^4}}{4 a x^4}-\frac {\text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b x^4}\right )}{4 a}\\ &=-\frac {\sqrt {a+b x^4}}{4 a x^4}+\frac {b \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{4 a^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 50, normalized size = 1.00 \begin {gather*} -\frac {\sqrt {a+b x^4}}{4 a x^4}+\frac {b \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )}{4 a^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^5*Sqrt[a + b*x^4]),x]

[Out]

-1/4*Sqrt[a + b*x^4]/(a*x^4) + (b*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/(4*a^(3/2))

________________________________________________________________________________________

Maple [A]
time = 0.16, size = 48, normalized size = 0.96

method result size
default \(-\frac {\sqrt {b \,x^{4}+a}}{4 a \,x^{4}}+\frac {b \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{4 a^{\frac {3}{2}}}\) \(48\)
risch \(-\frac {\sqrt {b \,x^{4}+a}}{4 a \,x^{4}}+\frac {b \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{4 a^{\frac {3}{2}}}\) \(48\)
elliptic \(-\frac {\sqrt {b \,x^{4}+a}}{4 a \,x^{4}}+\frac {b \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{4 a^{\frac {3}{2}}}\) \(48\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^5/(b*x^4+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/4*(b*x^4+a)^(1/2)/a/x^4+1/4*b/a^(3/2)*ln((2*a+2*a^(1/2)*(b*x^4+a)^(1/2))/x^2)

________________________________________________________________________________________

Maxima [A]
time = 0.51, size = 68, normalized size = 1.36 \begin {gather*} -\frac {\sqrt {b x^{4} + a} b}{4 \, {\left ({\left (b x^{4} + a\right )} a - a^{2}\right )}} - \frac {b \log \left (\frac {\sqrt {b x^{4} + a} - \sqrt {a}}{\sqrt {b x^{4} + a} + \sqrt {a}}\right )}{8 \, a^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(b*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

-1/4*sqrt(b*x^4 + a)*b/((b*x^4 + a)*a - a^2) - 1/8*b*log((sqrt(b*x^4 + a) - sqrt(a))/(sqrt(b*x^4 + a) + sqrt(a
)))/a^(3/2)

________________________________________________________________________________________

Fricas [A]
time = 0.37, size = 107, normalized size = 2.14 \begin {gather*} \left [\frac {\sqrt {a} b x^{4} \log \left (\frac {b x^{4} + 2 \, \sqrt {b x^{4} + a} \sqrt {a} + 2 \, a}{x^{4}}\right ) - 2 \, \sqrt {b x^{4} + a} a}{8 \, a^{2} x^{4}}, -\frac {\sqrt {-a} b x^{4} \arctan \left (\frac {\sqrt {b x^{4} + a} \sqrt {-a}}{a}\right ) + \sqrt {b x^{4} + a} a}{4 \, a^{2} x^{4}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(b*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

[1/8*(sqrt(a)*b*x^4*log((b*x^4 + 2*sqrt(b*x^4 + a)*sqrt(a) + 2*a)/x^4) - 2*sqrt(b*x^4 + a)*a)/(a^2*x^4), -1/4*
(sqrt(-a)*b*x^4*arctan(sqrt(b*x^4 + a)*sqrt(-a)/a) + sqrt(b*x^4 + a)*a)/(a^2*x^4)]

________________________________________________________________________________________

Sympy [A]
time = 1.18, size = 46, normalized size = 0.92 \begin {gather*} - \frac {\sqrt {b} \sqrt {\frac {a}{b x^{4}} + 1}}{4 a x^{2}} + \frac {b \operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} x^{2}} \right )}}{4 a^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**5/(b*x**4+a)**(1/2),x)

[Out]

-sqrt(b)*sqrt(a/(b*x**4) + 1)/(4*a*x**2) + b*asinh(sqrt(a)/(sqrt(b)*x**2))/(4*a**(3/2))

________________________________________________________________________________________

Giac [A]
time = 3.87, size = 51, normalized size = 1.02 \begin {gather*} -\frac {\frac {b^{2} \arctan \left (\frac {\sqrt {b x^{4} + a}}{\sqrt {-a}}\right )}{\sqrt {-a} a} + \frac {\sqrt {b x^{4} + a} b}{a x^{4}}}{4 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^5/(b*x^4+a)^(1/2),x, algorithm="giac")

[Out]

-1/4*(b^2*arctan(sqrt(b*x^4 + a)/sqrt(-a))/(sqrt(-a)*a) + sqrt(b*x^4 + a)*b/(a*x^4))/b

________________________________________________________________________________________

Mupad [B]
time = 1.31, size = 38, normalized size = 0.76 \begin {gather*} \frac {b\,\mathrm {atanh}\left (\frac {\sqrt {b\,x^4+a}}{\sqrt {a}}\right )}{4\,a^{3/2}}-\frac {\sqrt {b\,x^4+a}}{4\,a\,x^4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^5*(a + b*x^4)^(1/2)),x)

[Out]

(b*atanh((a + b*x^4)^(1/2)/a^(1/2)))/(4*a^(3/2)) - (a + b*x^4)^(1/2)/(4*a*x^4)

________________________________________________________________________________________